
Finite-size scaling in the  p-state mean-field Potts glass: exact statistical mechanics for small

samples

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys. A: Math. Gen. 29 3503

(http://iopscience.iop.org/0305-4470/29/13/020)

Download details:

IP Address: 171.66.16.70

The article was downloaded on 02/06/2010 at 03:55

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.29 (1996) 3503–3519. Printed in the UK
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Abstract. The mean-field Potts glass with bimodal bond distribution is studied, forp = 3 and
p = 6 Potts states, via exact summation of the partition function of systems of up toN = 15
sites. Averages over the disorder realizations are also done exactly up toN = 8, while random
bond configurations are generated for the larger systems. Our enumeration method is described
in some detail, and the applicability of finite-size scaling (FSS) for our very small systems is
discussed. Forp = 3 (second-order transition), the data agree reasonably with theFSS relations
given by Parisiet al for the p = 2 (Ising) case. Forp = 6, no clear signs of the predicted
first-order behaviour could be observed. This case is even more affected by finite-size effects,
since the necessary antiferromagnetic bias of the bond distribution introduces an additionalN−1

correction in the free energy. For bothp, the data are compatible with a vanishing ground-state
entropy.

1. Introduction

Spin glasses are model materials suitable to elucidate new glass-like phases and show new
ordering phenomena in disordered solids [1–4]. Research in this area has even stimulated
progress in quite different fields such as optimization problems, neural networks, etc [4].

A generalization of the Ising spin glass to a model withp discrete states,si ∈ {1, . . . , p},
is the Potts glass (PG) [5–8]. An exchange energyJij between these Potts spins arises only
if the considered pair(i, j) of sites occurs in the same state. This model can be considered
as a generic model of anisotropic orientational glasses [9], if we associate thep discrete
states withp orientations of a uniaxial molecule in the crystal. (Orientational glasses result
from random dilution of molecular crystals, e.g. N2 diluted with Ar.) Thus,p = 3 if the
molecules can align only along thex, y, z axes of a cubic crystal, whilep = 6 if they can
align along the face diagonals.

The main interest in this model does not stem from the application to these materials,
however, but from some properties found for theinfinite rangeversion of the model. The
transition from the paramagnetic to the spin-glass phase is here of second order forp 6 4
but of first order forp > 4. Although in the latter case the glass order parameter at
the transition appears discontinuously, there is no latent heat [6]. In addition, at lower
temperature a further transition occurs—presumably to a randomly canted ‘ferromagnetic’
phase (RCFM), but very little is actually known about this second transition and the associated
low-temperature phase. Finally, we mention that the dynamic variant of the mean-field
theory of Potts glasses [10, 11] shows a number of similarities to the mode-coupling theory
of the structural glass transition [12].
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In order to understand all these properties in more detail, one would like to know
whether these puzzling features are just peculiarities of the infinite interaction range limit or
also survive for short-range models, and if so, for which spatial dimensionalitiesd. In fact,
estimates for the upper critical dimensiondu (for d > du mean-field theory should hold)
range fromdu = 6 [1, 9] todu = 8 [13]. In contrast, a Monte Carlo (MC) work for a nearest-
neighbourPG in d = 4 with p = 3 states [14] has been interpreted as being compatible with
a first-order glass transition. However, these studies were made for extremely small systems
and hence are plagued with finite-size effects, which are not well understood. Before any
firm conclusions can be drawn, an investigation of finite-size effects on such unconventional
transitions is mandatory. As a matter of fact, a study of the finite-size effects in the infinite-
range Ising spin glass has already provided important checks of the theory [15, 16], and it is
likely that a study of size effects for the infinite range Potts glass might be similarly useful.

As a first step in this direction, we start in the present paper by a discussion of the
statistical mechanics of very small systems for which the partition function can be exactly
enumerated. Although this approach is limited to extremely small samples, experience with
the Ising case [15] has demonstrated its usefulness and feasibility, since it yields precise
results. Additionally, the computation of the partition function is not hampered by the
problem of critical slowing down, which is so cumbersome in theMC studies [1, 9], and
easily yields data for a large range of temperatures down to the ground state. Even in cases
where such results do not yet allow an unambiguous extrapolation to the thermodynamic
limit, they are useful as a test of the accuracy of standardMC work.

In the next section, we define the model and most of the quantities that are calculated,
and discuss the behaviour of the model in the high-temperature limit. The computational
methods needed to make the problem tractable are also described in section 3. Section 4
then presents a finite-size scaling analysis, inspired by the treatment of Parisiet al [16].
Both the casep = 3 and the casep = 6 are presented, and the entire range of temperatures
is discussed including ground-state properties and the specific heat behaviour. The last
section gives a summary of our results.

2. The model

We study the mean-field Potts glass Hamiltonian ofN interacting Potts spinssi ∈ {1, . . . , p}
on sitesi ∈ {1, . . . , N},

H = −p
∑
i<j

Jij δsi sj (1)

wherep is the number of Potts spin states, and theJij are random quenched interaction con-
stants (bonds) with meanJ0 ≡ [Jij ] ≡ J̃0/(N − 1) and variance(1J )2 ≡ [J 2

ij ] − [Jij ]2 ≡
J̃ 2/(N − 1), where we use [· · ·] to denote an average over the disorder realizations. The
‘thermodynamic’ (i.e. system-size independent) parameters areJ̃ andJ̃0; this scaling of the
interactions with the system size is necessary in order to ensure proper extensivity of the
system with1

2N(N − 1) equivalent bonds. While analytical calculations usually assume a
Gaussian distribution of bonds,

PG(Jij ) = 1√
2π(1J)

exp

{
− (Jij − J0)

2

2(1J )2

}
we here use, for computational simplicity, the bimodal distribution

Pb(Jij ) = xδ(Jij − J ) + (1 − x)δ(Jij + J )
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with J =
√

J 2
0 + (1J )2 and x = 1

2(1 + J0/J ). Although this distribution differs
considerably from a Gaussian, we can nevertheless compare our data to the results which
have been obtained for the model in the thermodynamic limit. In this limit, only the first
two moments will matter, and it has even been shown that the first-order corrections toFSS

will coincide [16]. As usual, we introduce the simplex spin representation [17] such that
the statesi corresponds to a(p − 1)-dimensional unit vectorESi pointing into theith corner
of a p-simplex, i.e.

ESi · ESj = pδsisj − 1

p − 1
.

The temperature is given in units of̃J/kB, i.e. we setJ̃ = kB = 1. In these units, the
system undergoes a phase transition from the paramagnetic (PM) to a spin glass (SG) phase
at the critical temperatureTc = 1. At a second temperatureT2 = (p/2 − 1)/(1 − J̃0)

another phase transition to a randomly canted ferromagnetic phase [5, 7] occurs, and hence
the spin-glass phase is limited to the temperature rangeT2 < T < Tc, and would not exist
at all if T2 > Tc, i.e. if J̃0 > 2 − p/2. For p > 4, this value is negative, i.e. in this case
a certain amount of antiferromagnetism is needed in order to stabilize the spin-glass phase.
We have always used̃J0 = 3 − p such thatT2 = 1

2.

2.1. The order parameter

The natural magnetic order parameter in the Potts model is

m ≡
√√√√p−1∑

µ=1

m2
µ (2)

where themµ denote thep − 1 components of the simplex magnetization

Em ≡ 1

N

N∑
i=1

ESi .

We will denote thekth moment of the magnetization distribution byM(k) ≡ [〈mk〉], using
the standard notation〈· · ·〉 for the thermal average at fixed bond configuration. Following
[18–21], the spin-glass order parameterq is defined via

q ≡
√√√√ p−1∑

µ,ν=1

(qµν)2 (3)

where

qµν ≡ 1

N

N∑
i=1

S
µ

i,1S
ν
i,2 (4)

defines a tensor of overlap parameters taken between two replicas 1 and 2, the latter being
defined as thermally independent systems with identical realization of the disorder. Only
even moments can be evaluated easily, since then the square root in (3) does not occur, and
we can exploit the statistical independence of the two replicas. However, in each replica,
the thermal averages are the same, since these are averages over thefull configuration space
of the finite system, such that ergodicity breaking, or replica-symmetry breaking, cannot
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occur. Hence, it is sufficient to consider only one system. For example, one finds for the
second moment, which is directly related to the spin-glass susceptibilityχSG,

q(2) ≡ [〈q2〉] = 1

N2

∑
i,j

[〈 ESi · ESj 〉2] = 1

N
χSG

where we have used the relations

〈Sµ

i,1S
ν
i,2S

µ

j,1S
ν
j,2〉 = 〈Sµ

i,1S
µ

j,1〉〈Sν
i,2S

ν
j,2〉

i.e. the statistical independence of the replicas, and

〈 ESi,1 · ESj,1〉 = 〈ESi,2 · ESj,2〉
i.e. their equivalence. The analogous formula for the fourth moment is

q(4) = 1

N4

∑
i,j

∑
k,l

[〈(ESi · ESj )(ESk · ESl)〉2] . (5)

For reasons of computational complexity, we did not study any higher moments. Forp = 6,
we found ourselves unable to even evaluateq(4). Usually, the fourth moment is used in
order to obtain the fourth-order cumulantg4 which we normalize here according to

g4 ≡ (p − 1)2

2

(
1 + 2

(p − 1)2
− q(4)

(q(2))2

)
.

This convention follows [22], which studied the behaviour of the analogous quantity for
pure Potts models near a first-order transition. The parameter(p − 1)2 occurs as the order
parameter dimensionality, which is, in our case, the number of tensor components.

The nature of the phase transitions has been analysed by Elderfieldet al [5], Grosset
al [6], and Cwilich et al [7]: for p < 4 the transitionPM to SG is continuous, while for
p > 4 the transition has no latent heat but a discontinuity in the order parameter [7], which
jumps from zero to a finite valueqjump, which is, in leading order of a(p − 4) expansion,

qjump = 2(4 − p)

p2 − 18p + 42
(6)

in our units. (This formula yieldsqjump = 2
15 ≈ 0.13 for p = 6.) At T < T2 = 0.5, the

SG phase becomes unstable, and the system goes into a more complicated spin-glass phase,
where the shape of Parisi’s [23] order parameter functionq(x) is more complicated. This
low-temperature phase has been called a ‘randomly canted ferromagnetic phase’ (RCFM),
since the order parameters parallel and vertical to an external field in the zero-field limit
are no longer equal.

2.2. High-temperature behaviour

It is straightforward to calculate the leading-order terms of the high-temperature series
expansion of the free energy per site, since at infinite temperature the averages over the
spin configurations and the disorder decouple. We found up to linear order inβ = 1/T

F

N
= −(βN)−1

[
ln

∑
{si }

exp(−βH)

]

= −β−1 ln p − J̃0

2
− β

4
(p − 1)

(
J̃ 2 + J̃ 2

0

N − 1

)
+ · · · .
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From this, one readily obtains for the entropy per site

S

N
= ln p − β2

4
(p − 1)

(
J̃ 2 + J̃ 2

0

N − 1

)
+ · · ·

and for the internal energy per site

U

N
= − J̃0

2
− β

2
(p − 1)

(
J̃ 2 + J̃ 2

0

N − 1

)
+ · · ·

showing that for non-vanishing first moment of the bond distribution there is a considerable
finite-size effect in these quantities, even up to rather large temperatures.

For the spin observables we did not evaluate the finite-T corrections. For the second
moment of the magnetization one finds [〈m2〉T =∞] = N−1, while the other moments scale
trivially with N in direct analogy to a random walk, [〈mk〉T =∞] ∝ N−k/2. For the glass
order parameter moments one findsq

(2)
T =∞ = N−1 and

q
(4)
T =∞ = 1

N2

(
1 + 2

(p − 1)2

N − 1

N

)
such that the fourth-order cumulant atT = ∞ has simply the valueg4 = N−1 for everyp.

3. Computational method

Our main interest was to study theFSS of the phase transitions as well as the ground
state behaviour in the Potts glass. Different methods are available: Monte Carlo (MC)
simulation, replica field theory, and the calculation of the exact partition function. In order
to be unaffected by large relaxation times atT → 0 andT → Tc [24, 25], and since the
replica field method has already been explored thoroughly [16, 26], we decided to investigate
the PG by computing the exact partition function. A particular advantage of this approach
is the fact that all temperatures fromT = 0 to T = ∞ are available from a single run. The
computation is complex, but feasible if one exploits the symmetries of the model.

3.1. Computational complexity

The thermal average of an observableA = A{Jij }({si}) reads

〈A〉 = 1

Z

∑
{si }

A({si})e−βH (7)

whereZ = ∑
{si } e−βH is the partition function. The number of elements in the sum (7) is the

number of spin configurations: #{{si}} = pN . Hence, without optimization the necessary
CPU time for a single bond configuration would already increase exponentially withN .
The bond average, when done exactly, scales even worse, since the number of bond
configurations is 2N(N−1)/2, increasing faster than exponentially withN . However, for
both summations the computational complexity can be reduced considerably, as outlined
below.

3.2. Optimizations

(i) Bit coding. The exponent in the Boltzmann factor reads

−βH = +βp
∑
i<j

Jij δsi sj .
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Writing

Jij = J (δJij ,+J − δJij ,−J ) ≡ J (g+
ij − g−

ij )

and introducingβ̃ ≡ βpJ , the exponent may be separated into a real part and an integer
part where the summation takes place:

−βH = β̃
∑
i<j

(g+
ij − g−

ij )δsi sj .

Defining a vector notation

EJ ≡ (J12, J13, J14, . . . , J1N, J23, J24, . . . , J2N, J34, . . . , JN−1,N )

(similarly for Eδ, Eg+, and Eg−), the exponent can be rewritten as

−βH = β̃( Eg+ · Eδ − Eg− · Eδ) .

The vectorsEδ, Eg+ and Eg− were stored in bit arrays in order to save memory and to
calculate the scalar products in a more efficient way, using logical bit functions.

(ii) Equivalent spin configurations. As a consequence of the Potts symmetry, several (at
leastp, at mostp!) spin configurations belong to the sameδ-vector. By constructing a
histogramn(Eδ), and evaluating the sum (7) only for differentδ-vectors, the computation
time can be reduced by a factor of roughlyp! The partition function then is

Z =
∑
{si }

e−βH =
∑

Eδ
n(Eδ)e−βH .

However, the histogramn(Eδ) is rather large (it contains roughlypN/p! entries), resulting
in a non-trivial memory requirement which limits the feasible system size considerably.

(iii) Density of states. Ferrenberg and Swendsen [27] promoted a histogram method for
Monte Carlo simulations. At a certain inverse temperatureβ0, the microcanonical partition
function �(E) (i.e. the number of states having a certain energyE) is estimated. Thermal
averages of observablesf = f (E), which only depend on the energy, are then evaluated
for temperaturesβ ≈ β0. Due to statistical errors in�(E), the temperature region of the
extrapolation is limited. However, in the present method we enumerate�(E) exactly, and
thus〈f (E)〉 can be evaluated forall temperatures. The gain in efficiency is rather obvious:
knowledge of�(E) enables us to use the identity∑

{si }
f (H({si}))e−βH({si }) =

∑
E

�(E)f (E)e−βE .

The sum on the left-hand side containspN terms, whereas the right-hand side scales only
with N2. Similarly, we used an analogous approach for calculating magnetization and
order-parameter moments.

With the help of these optimization steps, the computation of all observables for all
temperatures and one disorder realization took about one minute on an IBM RISC6000
workstation, for either (N = 15, p = 3) or (N = 12, p = 6). (Without any optimization,
this computation would have lasted several years.)

(iv) Equivalent bond configurations. For the exact disorder average, which turned out to
be feasible up toN = 8 (i.e. 228 bond configurations), we took advantage of a permutation
symmetry which reads:two bond configurations{Jij } are equivalent (i.e. in particular,
will yield the same thermodynamic averages) if there is a permutation of the indicesi, j

transferring one configuration into the other. This problem is straightforwardly mapped to
graph theory [28] by simply noting that a line connecting two points can be associated with
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a +J -bond, while a non-existing line between the points corresponds to a−J -bond, such
that every bond configuration can be uniquely identified with a graph.

In order to exploit this symmetry, one needs to know all the equivalence classes of
graphs and the number of graphs within a given equivalence class. The disorder average
can then be replaced by a weighted average over equivalence classes. Within a class it is
sufficient to do the calculation for just one arbitrarily chosen bond configuration, a class
representative. This is a very important optimization step, since the number of classes is
substantiallysmaller than the number of bond configurations.

However, in the literature [28] one finds only the total number of equivalence classes,
without any information on their individual sizes, and that only for smallN . In order
to distinguish between graphs of different classes, one has to find a numbergi attributed

Figure 1. Internal energy per spinU/N (a) for p = 3 and (b) p = 6, entropy per spinS/N

for (c) p = 3 and (d) p = 6 and free energy per spinF/N (e) for p = 3 and (f ) p = 6 plotted
versus temperature.
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to graph i, with gi = gj if i and j are equivalent, butgi 6= gj if they are not. We
tried to satisfy this property by choosing a simple but sufficiently complex observable—
the thermally averaged square of the magnetization in thep = 3 states Potts glass〈 Em2〉,
which was computed for every single-bond configuration at a non-trivial, fixed temperature
T = 1. The numerical effort needed for this average is small compared to that which
would be needed to calculate more complicated quantities likeq(2) and q(4) in the same
way, and therefore a ‘preliminary’ calculation of〈 Em2〉, which also yields information on
the degeneracies, is very useful. In order to obtain the latter, we counted the number of
occurrences of〈 Em2〉, i.e. we constructed a histogram, considering two bond configurations
as equivalent if they yielded the same value of〈 Em2〉, and without checking if they could
actually be mapped onto each other by a permutation. ForN 6 7, the number of generated
〈 Em2〉 values was found to be exactly equal to the number of equivalence classes known from
[28]. This means, of course, that there is a one-to-one correspondence between〈 Em2〉 values
and equivalence classes, such that the size of each class is just given by the corresponding
histogram value. However, it may also happen that twodifferent classes ‘accidentally’ yield
the same magnetization value, and then the number of classes will exceed the number of
magnetizations. This actually occurred forN = 8, where we found only 12 338 different
magnetizations, while there are [28] 12 346 different graph classes. Since this degeneracy,
however, pertains to all observables which depend only on energy and/or magnetization (in
particular, the free energy), only theq-moments can be affected. For this latter case, we
decided to neglect the (obviously small) error.

For N > 9, the procedure turned out to be computationally too expensive; in this case
we generated a large random sample of 105–106 bond configurations.

As an example, figure 1 presents our results for the free energy, internal energy and
entropy of both models (p = 3 andp = 6) as a function of temperature. It is seen that for
p = 3 the convergence to the thermodynamic limit (N → ∞) is fairly smooth and rapid on
the temperature scale shown. Only for aboutT < 2 are there pronounced finite-size effects,
which we shall attempt to analyse in the next section. Conversely, forp = 6 the approach to
the limiting behaviour is distinctly slower, as expected from the high-temperature expansion
(cf the preceding section; note thatJ̃0 = 0 for p = 3 but not forp = 6).

4. Numerical results

4.1. Critical behaviour forp = 3

The p = 3 PG has a continuous phase transition atTc = 1, very much like thep = 2 case,
i.e. the Sherrington–Kirkpatrick (SK) model [29, 30]. We expect the sameFSS relations in
both cases, with only the prefactors being different. We concentrate on the behaviour of the
order parameter first.

A useful guidance about the pertinentFSSexponents is obtained from a primitive Landau
theory. Starting from the usual Landau free energy per site for spin glasses [31],

f (q) = r

2
q2 + u

6
q3

wherer ∝ (T − Tc) and u > 0, we use the ansatz for the probability distribution of the
order parameter

P(q) = e−βNf (q)∫
dq e−βNf (q)

.
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Figure 2. Second momentq(2) ≡ [〈q2〉] of the spin-glass order parameter plotted versus
temperature for (a) p = 3 and (b) p = 6.

Figure 3. Scaling plot of the spin-glass susceptibility, i.e.N2/3q(2) is plotted versusN1/3τ

(whereτ = 1− 1/T ) (a) for p = 3 and (b) p = 6. Note that we expect the data to collapse on
a single curve only in the casep = 3 (second-order phase transition), in the asymptotic limit
N → ∞.

Of course, we do not expect this to really be a valid description of the physics, since one
has to take into account the replicas [16]; however, the replica field theory has a quite
similar structure such that the simple theory should yield the correct exponents, and the
order parameter moments should, in the vicinity ofTc, scale like

q(k) ≡ [〈qk〉] ≡
∫

dq P (q)qk = N−k/3f̃k(N
1/3τ) (8)

where f̃k(x) are scaling functions, andτ ≡ 1 − 1/T . Figure 2 shows the temperature
variation of the second moment of the order parameter, and figure 3 replots the data in
scaled form. However, for these small values ofN there is no good ‘data collapsing’ yet
seen, i.e. pronounced corrections to scaling occur.

The cumulantg4 should, atTc, not depend onN at all, since there the scaling argument
vanishes and the prefactorsN−k/3 cancel out, i.e. for large enoughN all curvesg4(T )

should intersect at one universal point. This property has found widespread application
in the FSS analysis of second-order phase transitions in pure systems, in particular for the
determination ofTc [32].

For impure systems like thePG the cumulant is also applied [33–36], but it is less well
understood (as isFSS in general for spin glasses). For our data, no intersection point is
observable, see figure 4; we attribute this behaviour to strong corrections to scaling and to
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Figure 4. Order parameter cumulant plotted
versus temperature forp = 3 and various
choices ofN . The error bars are about 0.1
for N = 14 and 0.03 forN = 12, but are not
shown for the sake of clarity of the plot. In
the casep = 6, the statistics of our data is
even worse, and hence the corresponding data
are not shown.

Figure 5. The plot (a) of q(2)(Tc) versusN−2/3 yields estimates ofG(−2/3) ≈ 0.86 and
G(−1) ≈ 0.4 (cf equations (10) and (11)). In the case (b) p = 6, q(2)(Tc) as a function of
N−1 seems to extrapolate to a finite value 0.03. This should be compared to the predicted jump
in the order parameter,q2

jump = (2/15)2 = 0.017 77 (cf equation (6)), which is quite good an
agreement, in view of the inaccuracy of the extrapolation, and the fact that equation (6) is only
a leading order(p − 4) expansion result.

statistical errors (large fluctuations inq(4)).
From our results it is obvious that for smallN corrections to finite-size scaling are very

pronounced. Although this casts doubt on the accuracy ofMC studies of short-range Potts
glasses, where rather small systems were used as well [14, 21], such corrections to scaling
must be expected, in view of experience with the Ising mean-field spin glass [16].

Parisiet al [16] studied the SK model using replica field theory to obtain the following
FSSrelations:

F(Tc)/N = F∞ + ln N

12N
+ F(−1)

N
+ F(−4/3)

N4/3
+ O(N−5/3) (9)

q(2)(Tc) = G(−2/3)

N2/3
+ G(−1)

N
+ O(N−4/3) (10)

which in leading order corresponds to relation (8) but contains corrections of relative order
N−1/3, and

U(Tc)/N = U∞ + G(−2/3)

2N2/3
+ O(N−1) . (11)

The numerical values for the constantsF(x) and G(x) were extracted fromMC data:
G(−2/3) ≈ 1, G(−1) ≈ −0.02 and 0< −F(−4/3) < F(−1) � 1.
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Figure 6. Plot of the internal energyUc/N = U(Tc)/N per spin versusN−1 at the critical
point (a) for p = 3 and (b) p = 6.

Figure 7. Plot of the free energy per spinFc/N versusN−1 at the critical point (a) for p = 3
and (b) p = 6.

Trying a similar scaling for thep = 3 mean-fieldPG with bimodal bond distribution,
we obtain the results shown in figures 5–7. The broken curves shown forp = 3 are fits to
functional forms as suggested by Parisiet al [16]. Unfortunately, nothing is known about
the coefficients, but the order of magnitude obtained from our fit looks reasonable.

Of course, the results are probably also affected by the additional phase transition at
T2 = 0.5. However, no clear evidence for this phase transition can be drawn from our
numerical data, since theq-moments are apparently not particularly sensitive to theRCFM

phase, and because our systems are, of course, rather small.

4.2. The casep = 6

In the casep = 6, it is not quite clear what kind of finite-size behaviour one should expect
for such an unusual phase transition without latent heat. Mainly for comparison, we hence
present our data in a similar way to thep = 3 case. One notes (cf figure 1) that at very
high temperatures there is still a pronouncedN dependence in the data, in marked contrast
to the p = 3 case. This behaviour is easily understood in terms of the high-temperature
series expansion: while forp = 3 we have choseñJ0 = 0, such that the coefficient of the
O(β) term in the expansion ofF/N is independent ofN , J̃0 = −3 for p = 6, such that in
this case the coefficient has a strong O(N−1) contribution.

This means, however, that for̃J0 6= 0—which is necessary for the stability of theSG
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phase—the system exhibits an additional strong finite-size effect unrelated to the phase
transition, such that aFSSanalysis of the latter will be even more difficult.

Nevertheless, a fit ofq(2) precisely atTc with first finite-size correction terms inN−2/3

and N−1 yields reasonable agreement with our data (figure 5(b)). Interestingly enough,
the data seem to extrapolate to afinite value ofq2

c in the thermodynamic limit; this might
be a hint to the finite jump inq at the transition. Of course, it is not at all obvious that
a similar scaling as in the casep = 3 should apply here, since we deal with an unusual
first-order transition here. But interpreting the lack of a latent heat as a feature of second-
order transitions, it is possible that this transition still has properties in common with critical
phenomena. The behaviour of the internal energy and the free energy atTc are both not yet
understood, see figures 6(b) and 7(b). It seems that these functions undergo a qualitative
change in behaviour whenN reachesp = 6.

4.3. Specific heat, energy cumulant and ferromagnetic susceptibility

For p = 3, the mean-field critical exponentα = 0 precludes a power-law singularity of
the specific heat, admitting only a cusp or a logarithmic singularity. Similarly, forp = 6,
the usual delta-function singularity ofCV (T ) associated with a first-order transition should
not occur since there is no latent heat involved. Indeed, there is some weak evidence that
CV (Tc) converges to a finite peak forN → ∞, see figures 8 and 9 and the fits inN−1/3

andN−2/3, which extrapolate to a maximum value ofCV ≈ 1 for p = 3 andCV ≈ 2 for
p = 6 in the thermodynamic limit. Again we have to add the caveat that it is not obvious
that this is the appropriate scaling forp = 6. The peaks are rather broad, which might be
related to the strong overall finite-size effect in the casep = 6, plus some contributions
from the transitionSG ↔ RCFM in both cases. A high-N MC study is still necessary in order
to investigate theT2-transition.

In the casep = 6, the location of the maximum ofCV clearly converges to the
temperatureT = Tc = 1 (figure 10(b)). Conversely, forp = 3 we were unable to observe
such a clear convergence, see figure 10(a). It seems that the mutual influence of the two
phase transitions atTc andT2 is stronger forp = 3.

We have also calculated the energy cumulant, here defined as

U4(T ) = 1

2

(
3 − [〈H4〉]

[〈H2〉]2

)
see figure 11. WhileU4 decreases monotonically with temperature forp = 3, one finds

Figure 8. Specific heat per spinCV , as a function of temperature, (a) for p = 3 and (b) p = 6.
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Figure 9. Maximum value of the specific heat per spin plotted versusN−1 (a) for p = 3 and
(b) p = 6.

Figure 10. LocationTmax of the specific heat maximum (a) for p = 3 and (b) p = 6 plotted
versusN−1. In the case ofp = 3, a polynomial inN−1/3 has been fitted to the data as indicated.

Figure 11. Energy cumulantU4 plotted versus temperature (a) for p = 3 and (b) p = 6.

that U4 has an intersection point and a minimum, both aboveTc. However, theoretical
understanding of this behaviour is still lacking. It should be mentioned that the above
definition does not use centred moments and hence depends on the choice of the energy
origin. It might well be that the structure observed forp = 6 is partly related to the non-
vanishing energy value in the high-temperature limit. At any rate, one should be cautious
interpreting the cumulant behaviour as a ‘fingerprint’ of first-order behaviour: the minimum
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Figure 12. Normalized ferromagnetic susceptibilityT χm = NM(2) plotted versus temperature
(a) for p = 3 and (b) p = 6.

which is usually observed in the cumulant near first-order transitions [22] is directly related
to the presence of well separated peaks in the corresponding distribution, i.e. to the existence
of a latent heat, which, however, isnot present here.

Given the fact that atT2 = 0.5 a transition to theRCFM phase occurs, the study of the
ferromagnetic susceptibilityT χM ≡ N [〈m2〉] ≡ NM(2) is also of interest. (Note that for
every single bond configuration〈 Em〉 ≡ 0, due to the Potts symmetry.) While forp = 3 this
quantity increases with decreasingT , but seems to converge to finite values forN → ∞
everywhere, forp = 6 this quantity even decreases with decreasing temperature (figure 12).

4.4. The ground state

Since the finite-size behaviour atT = 0 is not known, we plotted our results forU0, S0,
M

(2)

0 andq
(2)

0 versusN−1 and tried an empirical fitting with the most promising exponent
in N , see figure 13. (U0 andS0 are the ground-state energy and entropy, respectively, while
M

(2)

0 andq
(2)

0 are the second moments of the magnetization and theSG order parameter at
T = 0.)

For p = 3, we observed weak even–odd oscillations, whereas in the casep = 6 the
phenomena are more complicated and inhibit a reliable extrapolation of our data toN−1 = 0.
The data points are then aligned on arcs fromN = 2 to 6, and from 6 to 12. Hence, data
points forN = 13 and 14 could indicate the trend of the system sizes up toN = 18, but their
calculation would require memory of up to two Gigabytes, which was inaccessible to us.

It is theoretically not clear whether the ground-state entropyS0 should vanish. We found
an upper limit ofS0/N(p = 3) < 0.01 andS0/N(p = 6) < 0.1. Our estimates for the
ground-state energy areU0/N = −1.30(5) for p = 3 andU0/N = −1.3(2) for p = 6. A
high-p estimator ofU0 for the PG with Gaussianbond distribution is−√

p ln p [6]; this is
not confirmed by our ‘bimodal’ data.

The behaviour of the magnetization (or its second momentM(2)) indicates some evidence
for a finite but very small value of the ground-state magnetizationM0 in the casep = 3,
whereasM0 vanishes clearly in the casep = 6 (cf figure 13).

The spin-glass order parameter remains finite forT → 0 in both cases, as expected.
We obtainq

(2)

0 = 0.45(5) in the casep = 3, andq
(2)

0 = 0.17(4) for p = 6.
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Figure 13. Ground state (T = 0) observables plotted versusN−1: internal energy per spin
U0/N (a) for p = 3 and (b) p = 6, entropy per spinS0/N (c) for p = 3 and (d) p = 6, the
second moment of the magnetizationM

(2)
0 (e) for p = 3 and (f ) p = 6, and the second moment

of the SG order parameterq(2)
0 (g) for p = 3 and (h) p = 6.
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5. Summary and discussion

The exact statistical mechanics approach to thep = 3 Potts glass gives first ideas about the
ground state and confirms that theFSS results of Parisiet al [16] for the SK model apply
qualitatively also to the present model forp = 3. In the casep = 6, the calculation of data
for slightly bigger systems thanN = 12 is still desirable to get more reliable results. Any
clear evidence for the first-order character of the transition atp = 6 is lacking from our
data. In more detail, we can summarize our results as follows:

• From our data, we are not able to identify clearly whether there is some ferromagnetic
ordering or not atT = 0, and a vanishing ground-state entropy, related to a number of
ground states which, at most, increases slower than exponentially withN . The ground-
state energy is estimated by us asU0/N(p = 3) = −1.30(5) and U0/N(p = 6) =
−1.3(2) in units of J̃ . An upper limit for the ground-state entropy isS0/N < 0.01
for p = 3 andS0/N < 0.1 for p = 6, while both data sets are well compatible with
S0 = 0.

• There is some rather weak evidence for a small non-zero magnetization atT = 0 in the
casep = 3, whereas the magnetization vanishes forp = 6. But even forp = 3 a zero
magnetization is not definitively ruled out.

• The spin-glass order parameter is, as expected, in both cases clearly positive for all
T < Tc. Thus our extrapolations give clear evidence for the existence of a spin-glass
phase.

• The nature of theRCFM phase is not clear, like the transition into it. In particular, there
is no evidence for a divergent ferromagnetic susceptibility: forp = 6, it even decreases
with decreasing temperature.

• The specific heat behaviour is compatible with a non-divergent singularity at the
transition(s).

• In the casep = 6 there are, in addition to finite-size effects associated with the
transitions, additional finite-size effects related to the necessary antiferromagnetic bias
of the bond distribution, as revealed by the leading-order terms of the high-temperature
series expansion.

• Although the systems are too small to draw any firm conclusions, the data are compatible
with a finite jump in q for p = 6, which, by order of magnitude, agrees with the
analytic prediction, equation (6). Forp = 3, the corresponding extrapolation indicates
a vanishing jump, in agreement with the known second-order behaviour. The hysteresis-
like behaviour of the order parameter, which should occur in the first-order casep > 4
in a temperature intervalTc < T < TA [7, 10, 11], can show up in the present approach
at most only indirectly via the finite-size behaviour of the order parameter distribution:
In the thermodynamic limit, our procedure should converge to the equilibrium jump
without hysteresis (q(k) is a single-valued function ofT for all N ), while for finiteN all
metastable states also contribute to the averages. However, the finite-size behaviour of
the distribution function near a first-order spin-glass transition without latent heat is, to
our knowledge, unknown (in marked contrast to first-order transitions in pure systems,
where a well established theory and methodology [37] exists). Therefore, it is unclear
how to extract the contributions from the metastable states from the finite-size data.
This lack of theoretical understanding has of course also affected our extrapolations, for
which we simply used the same powers ofN as in the second-order case, without any
deeper justification.

• Results for larger values ofN could possibly be achieved with the help of modern Monte
Carlo methods like simulated tempering [38]. The free-energy behaviour obtained in
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the present study for small systems could be used as an educated guess for the necessary
reweighting schemes.

We hope that we have been able to show that the mean-field Potts glass still poses many
challenging questions.
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Angewandte Mathematik, Jülich, for technical support and advice. Moreover, we would
like to thank H Flyvbjerg for a careful reading of the manuscript.

References

[1] Binder K and Young A P 1986Rev. Mod. Phys.58 801
[2] Fischer K H and Hertz J 1991Spin Glasses(Cambridge: Cambridge University Press)
[3] Mezard M, Parisi G and Virasoro M 1987Spin Glass Theory and Beyond(Singapore: World Scientific)
[4] Stein D S 1992Spin Glasses and Biology(Singapore: World Scientific)
[5] Elderfield D and Sherrington D 1983J. Phys. C: Solid State Phys.16 L497, L971, L1169
[6] Gross D J, Kanter I and Sompolinsky H 1985Phys. Rev. Lett.55 304
[7] Cwilich G and Kirkpatrick T R 1989J. Phys. A: Math. Gen.22 4971
[8] Cwilich G 1990J. Phys. A: Math. Gen.23 5029
[9] Binder K and Reger J D 1992Adv. Phys.41 547

[10] Kirkpatrick T R and Wolynes P G 1987Phys. Rev.B 35 3072;36 8552
[11] Kirkpatrick T R and Thirumalai D 1987Phys. Rev.B 36 5388;37 5342

Thirumalai D and Kirkpatrick T R 1988Phys. Rev.B 38 4881
[12] Götze W and Sj̈ogren L 1992Rep. Prog. Phys.55 241
[13] Schreider G and Reger J D 1995J. Physiqueto appear
[14] Scheucher M and Reger J D 1993Z. Phys.B 91 383
[15] Young A P and Kirkpatrick S 1982Phys. Rev.B 25 440
[16] Parisi G, Ritort F and Slanina F 1993J. Phys. A: Math. Gen.26 247, 3775
[17] Zia R K P and Wallace D J 1975J. Phys. A: Math. Gen.8 1495
[18] Scheucher M and Reger J D 1992Phys. Rev.B 45 2499
[19] Scheucher M, Reger J D, Binder K and Young A P 1991Europhys. Lett.14 119
[20] Scheucher M, Reger J D and Young A P 1992Europhys. Lett.20 343
[21] Scheucher M, Reger J D, Binder K and Young A P 1990Phys. Rev.B 42 6881
[22] Vollmayr K, Reger J D, Scheucher M and Binder K 1993Z. Phys.B 91 113
[23] Parisi G 1979Phys. Rev. Lett.43 1754; 1980J. Phys. A: Math. Gen.13 1101
[24] Binder K and Heermann D W 1988Monte Carlo Simulation in Statistical Physics—an Introduction(Berlin:

Springer)
[25] Binder K 1992 Finite size effects at phase transitionsComputational Methods in Field Theoryed H Gausterer

and C B Lang (Berlin: Springer)
[26] Parisi G and Ritort F 1993J. Phys. A: Math. Gen.26 6711

Ciria J C, Parisi G and Ritort F 1993J. Phys. A: Math. Gen.26 6731
[27] Ferrenberg A M and Swendsen R H 1989Phys. Rev. Lett.63 1195
[28] Harary F and Palmer E 1973Graphical Enumeration(London: Academic)
[29] Sherrington D and Kirkpatrick S 1975Phys. Rev. Lett.35 1792
[30] Edwards S F and Anderson P W 1975J. Phys. F: Met. Phys.5 L49
[31] Suzuki M 1977Prog. Theor. Phys.58 1151
[32] Binder K 1981Z. Phys.B 43 119
[33] Bhatt R N and Young A P 1986J. Magn. Magn. Mater.54–57191
[34] Bhatt R N and Young A P 1985Phys. Rev. Lett.54 924
[35] Young A P 1983Phys. Rev. Lett.51 1206
[36] Bhatt R N and Young A P 1988Phys. Rev.B 37 5606



3520 B O Peters et al

[37] Janke W 1994Computer Simulation Studies in Condensed Matter Physicsvol 7, ed D P Landau, K K Mon
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