IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Finite-size scaling in the p-state mean-field Potts glass: exact statistical mechanics for small

samples

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys. A: Math. Gen. 29 3503
(http://iopscience.iop.org/0305-4470/29/13/020)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.70
The article was downloaded on 02/06/2010 at 03:55

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Gern9 (1996) 3503-3519. Printed in the UK

Finite-size scaling in thep-state mean-field Potts glass:
exact statistical mechanics for small samples

B O Peters, B Dunweg, K Binder, M d’Onorio de Meo and K Vollmayr
Institut fur Physik, Johannes Gutenberg-UniversiKoMa 331, D-55099 Mainz, Germany

Received 30 October 1995, in final form 16 February 1996

Abstract. The mean-field Potts glass with bimodal bond distribution is studiedp fer3 and

p = 6 Potts states, via exact summation of the partition function of systems of Np=t0l5

sites. Averages over the disorder realizations are also done exactlyNig=t8, while random

bond configurations are generated for the larger systems. Our enumeration method is described
in some detail, and the applicability of finite-size scalimgq for our very small systems is
discussed. Fop = 3 (second-order transition), the data agree reasonably withslations

given by Parisiet al for the p = 2 (Ising) case. Fop = 6, no clear signs of the predicted
first-order behaviour could be observed. This case is even more affected by finite-size effects,
since the necessary antiferromagnetic bias of the bond distribution introduces an additidnal
correction in the free energy. For bogh the data are compatible with a vanishing ground-state
entropy.

1. Introduction

Spin glasses are model materials suitable to elucidate new glass-like phases and show new
ordering phenomena in disordered solids [1-4]. Research in this area has even stimulated
progress in quite different fields such as optimization problems, neural networks, etc [4].

A generalization of the Ising spin glass to a model witHiscrete states; € {1, ..., p},
is the Potts glasse€) [5-8]. An exchange energy;; between these Potts spins arises only
if the considered paiti, j) of sites occurs in the same state. This model can be considered
as a generic model of anisotropic orientational glasses [9], if we associaje disxrete
states withp orientations of a uniaxial molecule in the crystal. (Orientational glasses result
from random dilution of molecular crystals, e.gp Niluted with Ar.) Thus,p = 3 if the
molecules can align only along the y, z axes of a cubic crystal, while = 6 if they can
align along the face diagonals.

The main interest in this model does not stem from the application to these materials,
however, but from some properties found for thénite rangeversion of the model. The
transition from the paramagnetic to the spin-glass phase is here of second orgeg fér
but of first order forp > 4. Although in the latter case the glass order parameter at
the transition appears discontinuously, there is no latent heat [6]. In addition, at lower
temperature a further transition occurs—presumably to a randomly canted ‘ferromagnetic’
phase RCFM), but very little is actually known about this second transition and the associated
low-temperature phase. Finally, we mention that the dynamic variant of the mean-field
theory of Potts glasses [10, 11] shows a number of similarities to the mode-coupling theory
of the structural glass transition [12].

t Present address: Forschungszentrum KFA, HLRZ, D-524ii6h] Germany.
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In order to understand all these properties in more detail, one would like to know
whether these puzzling features are just peculiarities of the infinite interaction range limit or
also survive for short-range models, and if so, for which spatial dimensionalitigs fact,
estimates for the upper critical dimensidp (for d > d, mean-field theory should hold)
range fromd, = 6 [1, 9] tod, = 8 [13]. In contrast, a Monte Carle€) work for a nearest-
neighbourrGin d = 4 with p = 3 states [14] has been interpreted as being compatible with
a first-order glass transition. However, these studies were made for extremely small systems
and hence are plagued with finite-size effects, which are not well understood. Before any
firm conclusions can be drawn, an investigation of finite-size effects on such unconventional
transitions is mandatory. As a matter of fact, a study of the finite-size effects in the infinite-
range Ising spin glass has already provided important checks of the theory [15, 16], and it is
likely that a study of size effects for the infinite range Potts glass might be similarly useful.

As a first step in this direction, we start in the present paper by a discussion of the
statistical mechanics of very small systems for which the partition function can be exactly
enumerated. Although this approach is limited to extremely small samples, experience with
the Ising case [15] has demonstrated its usefulness and feasibility, since it yields precise
results. Additionally, the computation of the partition function is not hampered by the
problem of critical slowing down, which is so cumbersome in the studies [1, 9], and
easily yields data for a large range of temperatures down to the ground state. Even in cases
where such results do not yet allow an unambiguous extrapolation to the thermodynamic
limit, they are useful as a test of the accuracy of standardvork.

In the next section, we define the model and most of the quantities that are calculated,
and discuss the behaviour of the model in the high-temperature limit. The computational
methods needed to make the problem tractable are also described in section 3. Section 4
then presents a finite-size scaling analysis, inspired by the treatment of &taais|16].

Both the casep = 3 and the cas@ = 6 are presented, and the entire range of temperatures
is discussed including ground-state properties and the specific heat behaviour. The last
section gives a summary of our results.

2. The model

We study the mean-field Potts glass Hamiltoniamvohteracting Potts spins € {1, ..., p}
on sitesi € {1, ..., N},

H=-p Z Jij8ss; (1)
i<j

wherep is the number of Potts spin states, and fjeare random quenched interaction con-
stants (bonds) with meas = [J;;] = Jo/(N — 1) and variancgAJ)? = [J5] — [ =
J2/(N — 1), where we use-[-] to denote an average over the disorder realizations. The
‘thermodynamic’ (i.e. system-size independent) parameters ared Jo; this scaling of the
interactions with the system size is necessary in order to ensure proper extensivity of the
system With%N(N — 1) equivalent bonds. While analytical calculations usually assume a
Gaussian distribution of bonds,

1 <J,~j—Jo)2}
Po(Jij) =~ exp| —- =00
N =) exp{ 2(A )2

we here use, for computational simplicity, the bimodal distribution

Po(Jij) = x8(J;j — J) + A= x)8(J;; + J)
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with J = ,/JOZ+(AJ)2 and x = %(1 + Jo/J). Although this distribution differs
considerably from a Gaussian, we can nevertheless compare our data to the results which
have been obtained for the model in the thermodynamic limit. In this limit, only the first
two moments will matter, and it has even been shown that the first-order correctiess to

will coincide [16]. As usual, we introduce the simplex spin representation [17] such that
the states; corresponds to & — 1)-dimensional unit vectos; pointing into theith corner

of a p-simplex, i.e.

-

L ph, —1
Si‘szp'] -

p—1

The temperature is given in units of/kg, i.e. we set/ = kg = 1. In these units, the
system undergoes a phase transition from the paramagneficq a spin glassqG) phase

at the critical temperaturd, = 1. At a second temperatur® = (p/2 — 1)/(1 — Jo)

another phase transition to a randomly canted ferromagnetic phase [5, 7] occurs, and hence
the spin-glass phase is limited to the temperature rdhge T < T, and would not exist
atallif I, > T, i.e. if Jo > 2— p/2. Forp > 4, this value is negative, i.e. in this case

a certain amount of antiferromagnetism is needed in order to stabilize the spin-glass phase.
We have always usedy = 3 — p such thatl, = %

2.1. The order parameter

The natural magnetic order parameter in the Potts model is

&)

where them, denote thep — 1 components of the simplex magnetization
1 &
N Z Sl' .
i=1
We will denote thekth moment of the magnetization distribution B = [(m*)], using

the standard notatiot - -) for the thermal average at fixed bond configuration. Following
[18-21], the spin-glass order paramegeis defined via

m

®)

where
q"'=—) SIS, (4)

defines a tensor of overlap parameters taken between two replicas 1 and 2, the latter being
defined as thermally independent systems with identical realization of the disorder. Only
even moments can be evaluated easily, since then the square root in (3) does not occur, and
we can exploit the statistical independence of the two replicas. However, in each replica,
the thermal averages are the same, since these are averages dukrabefiguration space

of the finite system, such that ergodicity breaking, or replica-symmetry breaking, cannot
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occur. Hence, it is sufficient to consider only one system. For example, one finds for the
second moment, which is directly related to the spin-glass susceptipiiity

1 5 o 1
q? =[{g*)] = 2 Z“S" - 5;)?] = 3 156
L]

where we have used the relations

(S#leZS}flSj!i2> = <Sﬁ15ﬁ1><sz‘v,25jv,2>

i.e. the statistical independence of the replicas, and
(Si1-Si1) = (Si2+ S;2)

i.e. their equivalence. The analogous formula for the fourth moment is

1 .
¢ =D ;[«Si - S)(Se - S ©)
L] s
For reasons of computational complexity, we did not study any higher momentg. £,
we found ourselves unable to even evaluat®. Usually, the fourth moment is used in
order to obtain the fourth-order cumulagi which we normalize here according to

_(p—02 2 g%
=" <1+<p—1>2_<q<2>>2>'

This convention follows [22], which studied the behaviour of the analogous quantity for
pure Potts models near a first-order transition. The paramgter1)? occurs as the order
parameter dimensionality, which is, in our case, the number of tensor components.

The nature of the phase transitions has been analysed by Eldeftfiald5], Grosset
al [6], and Cwilichet al [7]: for p < 4 the transitionPM to SG is continuous, while for
p > 4 the transition has no latent heat but a discontinuity in the order parameter [7], which
jumps from zero to a finite valugump, Which is, in leading order of g — 4) expansion,

- 24-p)
Ajump p%—18p + 42

(6)

in our units. (This formula yieldgjmp = 135 ~ 013 forp=6.) AtT < T, = 05, the

SG phase becomes unstable, and the system goes into a more complicated spin-glass phase,
where the shape of Parisi’'s [23] order parameter funcior) is more complicated. This
low-temperature phase has been called a ‘randomly canted ferromagnetic prese, (

since the order parameters parallel and vertical to an external field in the zero-field limit

are no longer equal.

2.2. High-temperature behaviour

It is straightforward to calculate the leading-order terms of the high-temperature series
expansion of the free energy per site, since at infinite temperature the averages over the
spin configurations and the disorder decouple. We found up to linear orgles=il/ T

L —<ﬁzv>1[ln exp(—ﬂH)}
N

{si}

_ Jo B - J2

1 2 0

= B lnp-L_Pop_p(re o ).
poinp 2 4(P )< +N—1>
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From this, one readily obtains for the entropy per site

N N-1

and for the internal energy per site
U Jo B - e
= _ oDl J 0
N 5 ﬂp % +N_1+

showing that for non-vanishing first moment of the bond distribution there is a considerable
finite-size effect in these quantities, even up to rather large temperatures.

For the spin observables we did not evaluate the fifiiteerrections. For the second
moment of the magnetization one find®:f)7—.] = N1, while the other moments scale
trivially with N in direct analogy to a random walk{n*)7—.] o« N=%/2. For the glass
order parameter moments one fingd = N~! and

1 2 N-1
@ _
qu—Nime_w N )

such that the fourth-order cumulant&t= oo has simply the valug, = N~ for every p.

S 2 . J@
=mp—4@—noﬁr °>+m

3. Computational method

Our main interest was to study tiess of the phase transitions as well as the ground
state behaviour in the Potts glass. Different methods are available: Monte @ajo (
simulation, replica field theory, and the calculation of the exact partition function. In order
to be unaffected by large relaxation times7at— 0 andT — T, [24,25], and since the
replica field method has already been explored thoroughly [16, 26], we decided to investigate
the PG by computing the exact partition function. A particular advantage of this approach
is the fact that all temperatures frofh= 0 to T = oo are available from a single run. The
computation is complex, but feasible if one exploits the symmetries of the model.

3.1. Computational complexity

The thermal average of an observaldle= A, ({s;}) reads

w=%mewW )
{si}

whereZ = Z{s,»} e A" is the partition function. The number of elements in the sum (7) is the
number of spin configurations: {#;}} = p". Hence, without optimization the necessary
cpu time for a single bond configuration would already increase exponentially Mith
The bond average, when done exactly, scales even worse, since the number of bond
configurations is #(-1/2increasing faster than exponentially witi. However, for
both summations the computational complexity can be reduced considerably, as outlined
below.

3.2. Optimizations

() Bit coding. The exponent in the Boltzmann factor reads
_IBH = +Bp Z Jij(ss,s,--

i<j
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Writing

Jij = J G0 = 855-0) = J (g5 — ;)
and introducing8 = BpJ, the exponent may be separated into a real part and an integer
part where the summation takes place:

i<j

Defining a vector notation

j = (J121 J13» Jl47 e JlN’ J231 J247 ey J2N7 '134’ ey JNfl,N)
(similarly for 3, gﬁ+, and gﬁ—), the exponent can be rewritten as

~BH =gt -5—g -9).

The vectorss, gﬂ+ and gﬂ— were stored in bit arrays in order to save memory and to

calculate the scalar products in a more efficient way, using logical bit functions.

(i) Equivalent spin configurationsAs a consequence of the Potts symmetry, several (at
least p, at mostp!) spin configurations belong to the samevector. By constructing a
histogramn(g), and evaluating the sum (7) only for differetvectors, the computation
time can be reduced by a factor of roughly The partition function then is

Z= Ze’fm = Zn(§)e’m‘.
{si}

8

However, the histogram(S) is rather large (it contains roughly” /p! entries), resulting
in a non-trivial memory requirement which limits the feasible system size considerably.

(i) Density of states Ferrenberg and Swendsen [27] promoted a histogram method for
Monte Carlo simulations. At a certain inverse temperagiy,ethe microcanonical partition
function Q(E) (i.e. the number of states having a certain endfgys estimated. Thermal
averages of observablgs= f(E), which only depend on the energy, are then evaluated
for temperature® ~ Bo. Due to statistical errors i (E), the temperature region of the
extrapolation is limited. However, in the present method we enumeérat® exactly, and
thus(f(E)) can be evaluated fall temperatures. The gain in efficiency is rather obvious:
knowledge ofQ2(E) enables us to use the identity

D FHAsi)e D = N Q(E) f(E)e PE .
{si} E

The sum on the left-hand side contaip¥ terms, whereas the right-hand side scales only
with N2. Similarly, we used an analogous approach for calculating magnetization and
order-parameter moments.

With the help of these optimization steps, the computation of all observables for all
temperatures and one disorder realization took about one minute on an IBM RISC6000
workstation, for either§¥ = 15, p = 3) or (N = 12, p = 6). (Without any optimization,
this computation would have lasted several years.)

(iv) Equivalent bond configurationsFor the exact disorder average, which turned out to
be feasible up tav = 8 (i.e. Z8 bond configurations), we took advantage of a permutation
symmetry which reads:itwo bond configurationgJ;;} are equivalent (i.e. in particular,

will yield the same thermodynamic averages) if there is a permutation of the indiges
transferring one configuration into the otheThis problem is straightforwardly mapped to
graph theory [28] by simply noting that a line connecting two points can be associated with
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a +J-bond, while a non-existing line between the points corresponds-td-#ond, such
that every bond configuration can be uniquely identified with a graph.

In order to exploit this symmetry, one needs to know all the equivalence classes of
graphs and the number of graphs within a given equivalence class. The disorder average
can then be replaced by a weighted average over equivalence classes. Within a class it is
sufficient to do the calculation for just one arbitrarily chosen bond configuration, a class
representative. This is a very important optimization step, since the number of classes is
substantiallysmaller than the number of bond configurations.

However, in the literature [28] one finds only the total number of equivalence classes,
without any information on their individual sizes, and that only for snéll In order
to distinguish between graphs of different classes, one has to find a ngmhb#ributed

0.2

T T T T T T T
T—oo limit —>

T
15
ok (@ ) Internal energy P oo limit —> (bh) IntemalGenergy

p=3 p=

T T T T 2 T T T T
() Entropy

. L15}-(d) Entropy T-5o00 limit —>
p=

08

0.6

S/N

0.4

0.2

— Y T T
(f) Free energy
p=6

T T
( e ) Free energy
p=3

T ~+ 00 behaviour

FIN

T oo

FIN

behaviour

) 0.5 1 15 2 25 3 ) 0.5 1 15 2 25 3

Figure 1. Internal energy per spiV/N (a) for p = 3 and b) p = 6, entropy per spir§/N
for (c) p =3 and @) p = 6 and free energy per spifi/N (e) for p = 3 and ) p = 6 plotted
versus temperature.
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to graphi, with g; = g; if i and j are equivalent, bug; # g; if they are not. We
tried to satisfy this property by choosing a simple but sufficiently complex observable—
the thermally averaged square of the magnetization inpthe 3 states Potts glas®:?),
which was computed for every single-bond configuration at a non-trivial, fixed temperature
T = 1. The numerical effort needed for this average is small compared to that which
would be needed to calculate more complicated quantitiesgikReand ¢ in the same
way, and therefore a ‘preliminary’ calculation ¢f:2), which also yields information on
the degeneracies, is very useful. In order to obtain the latter, we counted the number of
occurrences otm?), i.e. we constructed a histogram, considering two bond configurations
as equivalent if they yielded the same value(@f), and without checking if they could
actually be mapped onto each other by a permutation.\Fer 7, the number of generated
(m?) values was found to be exactly equal to the number of equivalence classes known from
[28]. This means, of course, that there is a one-to-one correspondence béiteenlues
and equivalence classes, such that the size of each class is just given by the corresponding
histogram value. However, it may also happen that different classes ‘accidentally’ yield
the same magnetization value, and then the number of classes will exceed the number of
magnetizations. This actually occurred fr = 8, where we found only 12 338 different
magnetizations, while there are [28] 12 346 different graph classes. Since this degeneracy,
however, pertains to all observables which depend only on energy and/or magnetization (in
particular, the free energy), only themoments can be affected. For this latter case, we
decided to neglect the (obviously small) error.

For N > 9, the procedure turned out to be computationally too expensive; in this case
we generated a large random sample of-10f bond configurations.

As an example, figure 1 presents our results for the free energy, internal energy and
entropy of both modelsy(= 3 andp = 6) as a function of temperature. It is seen that for
p = 3 the convergence to the thermodynamic linit & oo) is fairly smooth and rapid on
the temperature scale shown. Only for ab®ut 2 are there pronounced finite-size effects,
which we shall attempt to analyse in the next section. Conversely, foi6 the approach to
the limiting behaviour is distinctly slower, as expected from the high-temperature expansion
(cf the preceding section; note th&t = 0 for p = 3 but not forp = 6).

4. Numerical results

4.1. Critical behaviour forp = 3

The p = 3 PG has a continuous phase transitionTat= 1, very much like thep = 2 case,
i.e. the Sherrington—Kirkpatrick (SK) model [29, 30]. We expect the sassgelations in
both cases, with only the prefactors being different. We concentrate on the behaviour of the
order parameter first.

A useful guidance about the pertingisisexponents is obtained from a primitive Landau
theory. Starting from the usual Landau free energy per site for spin glasses [31],

_r 2 43
f(q)—zq +6q

wherer « (T — T.) andu > 0, we use the ansatz for the probability distribution of the
order parameter

e AN @

P@ = ryemia
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Figure 2. Second momeny® =
temperature ford) p =3 and ) p

[(¢®)] of the spin-glass order parameter plotted versus

6.
18 T T T T T T v Y T ¥ T T
(@) Scaling plot; of the SG susceptibility 1 ( b) Scaling plotiof the SG susceptibility
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& )
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Figure 3. Scaling plot of the spin-glass susceptibility, i&%/3¢@ is plotted versusv/3¢
(wherer =1—-1/T) (a) for p = 3 and p) p = 6. Note that we expect the data to collapse on
a single curve only in the cage = 3 (second-order phase transition), in the asymptotic limit
N — 0.

Of course, we do not expect this to really be a valid description of the physics, since one
has to take into account the replicas [16]; however, the replica field theory has a quite
similar structure such that the simple theory should yield the correct exponents, and the
order parameter moments should, in the vicinityZpf scale like
q“ =[(g")] = / dg P(q)q" = N7 fi(N*r) ®

where f;(x) are scaling functions, and = 1 — 1/T. Figure 2 shows the temperature
variation of the second moment of the order parameter, and figure 3 replots the data in
scaled form. However, for these small valueshofthere is no good ‘data collapsing’ yet
seen, i.e. pronounced corrections to scaling occur.

The cumulantg4 should, atTt, not depend oV at all, since there the scaling argument
vanishes and the prefactoré—*/3 cancel out, i.e. for large enough all curves g4(T)
should intersect at one universal point. This property has found widespread application
in the Fssanalysis of second-order phase transitions in pure systems, in particular for the
determination off; [32].

For impure systems like thec the cumulant is also applied [33—36], but it is less well
understood (as isssin general for spin glasses). For our data, no intersection point is
observable, see figure 4; we attribute this behaviour to strong corrections to scaling and to
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Fourth order cumulant of the SG order parameter
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Figure 4. Order parameter cumulant plotted

o typical error bar i versus temperature fop = 3 and various
for N=14 choices of N. The error bars are about 0.1
02 for N = 14 and 0.03 forN = 12, but are not
Ne=13 10 shown for the sake of clarity of the plot. In
o ! ! : L ) ; : : ) the casep = 6, the statistics of our data is
002 04 06 08 1 12 14 16 18 2  gyenworse, and hence the corresponding data
T are not shown.
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(a ) Second moment of the order parameter at T, 9 ( b) Second moment of the order parameter at T,
orr p=3 e 7 o5 p=6 /—?"/-
06} e ~
o5} 6 1" i e 1
—~ . = v
‘:’304— R 4 %‘30‘3- o B
£ e
03 ﬁ»‘a/ § 0.2p &ee’«g -
0.2k Mz b L
oib . 01 ’1\ GB(N) = 0.0300 + 0.6236N~3/3 + 0.16351 N -
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0 0.1 0.2 03 0.4 0.5 0.6 0.7 0 0.1 0.2 0.3 0.4 0.5
N3 N1

Figure 5. The plot @) of ¢®®(Tc) versusN~2/3 yields estimates ofG(_z3 ~ 0.86 and

G(—1 ~ 0.4 (cf equations (10) and (11)). In the cas® @ = 6, q@(T,) as a function of

N~1 seems to extrapolate to a finite valu@® This should be compared to the predicted jump

in the order parameteqﬁmp = (2/15)2 = 0.017 77 (cf equation (6)), which is quite good an
agreement, in view of the inaccuracy of the extrapolation, and the fact that equation (6) is only
a leading ordeKp — 4) expansion result.

statistical errors (large fluctuations i®).

From our results it is obvious that for small corrections to finite-size scaling are very
pronounced. Although this casts doubt on the accuraay@studies of short-range Potts
glasses, where rather small systems were used as well [14, 21], such corrections to scaling
must be expected, in view of experience with the Ising mean-field spin glass [16].

Parisiet al [16] studied the SK model using replica field theory to obtain the following
FSsrelations:

INnN | Fey | Feas
FT)/N = Fu+ o+ 2 4 20

G G-
(=2/3) =D +O(N74/3) (10)

+ O(N~3) 9)

2 _
q 7 (Te) = N3 + N

which in leading order corresponds to relation (8) but contains corrections of relative order
N3 and

G
U(T,)/N = Us + ;TZ? +OWN Y. (11)

The numerical values for the constank,, and G, were extracted frommc data:
G(_z/g) ~1, G(_]_) ~ —0.02 and 0< —F(_4/3) < F(_l) < 1.
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Figure 6. Plot of the internal energy/c/N = U(T¢)/N per spin versusV—! at the critical
point @) for p =3 and p) p = 6.
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Figure 7. Plot of the free energy per spif/N versusN 1 at the critical point §) for p = 3
and p) p =6.

Trying a similar scaling for thep = 3 mean-fieldrG with bimodal bond distribution,
we obtain the results shown in figures 5—7. The broken curves shown$08 are fits to
functional forms as suggested by Pasgsial [16]. Unfortunately, nothing is known about
the coefficients, but the order of magnitude obtained from our fit looks reasonable.

Of course, the results are probably also affected by the additional phase transition at
T, = 0.5. However, no clear evidence for this phase transition can be drawn from our
numerical data, since thgmoments are apparently not particularly sensitive torRbem
phase, and because our systems are, of course, rather small.

4.2. The casep =6

In the casep = 6, it is not quite clear what kind of finite-size behaviour one should expect
for such an unusual phase transition without latent heat. Mainly for comparison, we hence
present our data in a similar way to tipe= 3 case. One notes (cf figure 1) that at very
high temperatures there is still a pronoundédlependence in the data, in marked contrast
to the p = 3 case. This behaviour is easily understood in terms of the high-temperature
series expansion: while fgg = 3 we have chosedy = 0, such that the coefficient of the
O(B) term in the expansion of /N is independent oV, Jo = —3 for p = 6, such that in
this case the coefficient has a strong\NO'!) contribution.

This means, however, that fok # 0—which is necessary for the stability of tise
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phase—the system exhibits an additional strong finite-size effect unrelated to the phase
transition, such that assanalysis of the latter will be even more difficult.

Nevertheless, a fit of @ precisely atT, with first finite-size correction terms itv—%/3
and N~! yields reasonable agreement with our data (figui@)5( Interestingly enough,
the data seem to extrapolate tdimite value ofg?2 in the thermodynamic limit; this might
be a hint to the finite jump iy at the transition. Of course, it is not at all obvious that
a similar scaling as in the cage = 3 should apply here, since we deal with an unusual
first-order transition here. But interpreting the lack of a latent heat as a feature of second-
order transitions, it is possible that this transition still has properties in common with critical
phenomena. The behaviour of the internal energy and the free enefgwia both not yet
understood, see figureskg(and 7). It seems that these functions undergo a qualitative
change in behaviour wheN reaches = 6.

4.3. Specific heat, energy cumulant and ferromagnetic susceptibility

For p = 3, the mean-field critical exponent = 0 precludes a power-law singularity of
the specific heat, admitting only a cusp or a logarithmic singularity. Similarlypfer 6,

the usual delta-function singularity @fy (T') associated with a first-order transition should
not occur since there is no latent heat involved. Indeed, there is some weak evidence that
Cy(T) converges to a finite peak fa¥ — oo, see figures 8 and 9 and the fits AT/

and N~%/3, which extrapolate to a maximum value 6f, ~ 1 for p = 3 andCy ~ 2 for

p = 6 in the thermodynamic limit. Again we have to add the caveat that it is not obvious
that this is the appropriate scaling fpr= 6. The peaks are rather broad, which might be
related to the strong overall finite-size effect in the case- 6, plus some contributions
from the transitiorsG <> RCFM in both cases. A higl¥ mc study is still necessary in order

to investigate thé>»-transition.

In the casep = 6, the location of the maximum ofy clearly converges to the
temperaturel’ = T, = 1 (figure 10p)). Conversely, forp = 3 we were unable to observe
such a clear convergence, see figurealO(t seems that the mutual influence of the two
phase transitions &t and T is stronger forp = 3.

We have also calculated the energy cumulant, here defined as

1 [(H*)] )
Ug(T) = =|3—
e e
see figure 11. Whild/, decreases monotonically with temperature foe= 3, one finds

0.6 : .

T 07F T T T T -
( b) Specific heat

p=6

T
(a ) Specific heat

0.6

[i%:}

0.4

Cyv

6.3

0.2

a1

Figure 8. Specific heat per spifiy, as a function of temperatureg)(for p = 3 and p) p = 6.
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that U, has an intersection point and a minimum, both ab@ye However, theoretical
understanding of this behaviour is still lacking. It should be mentioned that the above
definition does not use centred moments and hence depends on the choice of the energy
origin. It might well be that the structure observed foe= 6 is partly related to the non-
vanishing energy value in the high-temperature limit. At any rate, one should be cautious
interpreting the cumulant behaviour as a ‘fingerprint’ of first-order behaviour: the minimum
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Figure 12. Normalized ferromagnetic susceptibilityx,, = NM@ plotted versus temperature
(a) for p=3 and p) p = 6.

which is usually observed in the cumulant near first-order transitions [22] is directly related
to the presence of well separated peaks in the corresponding distribution, i.e. to the existence
of a latent heat, which, however, i®t present here.

Given the fact that af> = 0.5 a transition to the&kcFm phase occurs, the study of the
ferromagnetic susceptibility’ x,; = N[(m?)] = NM@ is also of interest. (Note that for
every single bond configuratiop) = 0, due to the Potts symmetry.) While fpr= 3 this
guantity increases with decreasifig but seems to converge to finite values fér— oo
everywhere, folp = 6 this quantity even decreases with decreasing temperature (figure 12).

4.4. The ground state

Since the finite-size behaviour & = 0 is not known, we plotted our results féfy, So,
MP andg? versusN~! and tried an empirical fitting with the most promising exponent
in N, see figure 13.{p and Sy are the ground-state energy and entropy, respectively, while
MP andgqy are the second moments of the magnetization ands¢herder parameter at
T=0)

For p = 3, we observed weak even—odd oscillations, whereas in the case the
phenomena are more complicated and inhibit a reliable extrapolation of our détd te 0.
The data points are then aligned on arcs frddm= 2 to 6, and from 6 to 12. Hence, data
points forN = 13 and 14 could indicate the trend of the system sizes W 918, but their
calculation would require memory of up to two Gigabytes, which was inaccessible to us.

It is theoretically not clear whether the ground-state entrfpshould vanish. We found
an upper limit ofSo/N(p = 3) < 0.01 andSy/N(p = 6) < 0.1. Our estimates for the
ground-state energy algy/N = —1.30(5) for p = 3 andUy/N = —1.3(2) for p = 6. A
high-p estimator ofUy for the PG with Gaussianbond distribution is—+/p In p [6]; this is
not confirmed by our ‘bimodal’ data.

The behaviour of the magnetization (or its second momg&#t) indicates some evidence
for a finite but very small value of the ground-state magnetizadifynin the casep = 3,
whereasM, vanishes clearly in the cage= 6 (cf figure 13).

The spin-glass order parameter remains finite o~ 0 in both cases, as expected.
We obtaing{? = 0.45(5) in the casep = 3, andg? = 0.17(4) for p = 6.
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Figure 13. Ground state X = 0) observables plotted versug!: internal energy per spin
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5. Summary and discussion

The exact statistical mechanics approach topthe 3 Potts glass gives first ideas about the
ground state and confirms that thesresults of Parisket al [16] for the SK model apply
gualitatively also to the present model fpr= 3. In the case = 6, the calculation of data
for slightly bigger systems thaV = 12 is still desirable to get more reliable results. Any
clear evidence for the first-order character of the transitiop at 6 is lacking from our
data. In more detail, we can summarize our results as follows:

From our data, we are not able to identify clearly whether there is some ferromagnetic
ordering or not al’ = 0, and a vanishing ground-state entropy, related to a number of
ground states which, at most, increases slower than exponentially\vitrhe ground-

state energy is estimated by us @g/N(p = 3) = —1.30(5) and Up/N(p = 6) =
—1.3(2) in units of J. An upper limit for the ground-state entropy $/N < 0.01

for p = 3 andSy/N < 0.1 for p = 6, while both data sets are well compatible with
So=0.

There is some rather weak evidence for a small non-zero magnetizatioe-4t in the

casep = 3, whereas the magnetization vanishes ot 6. But even forp = 3 a zero
magnetization is not definitively ruled out.

The spin-glass order parameter is, as expected, in both cases clearly positive for all
T < T.. Thus our extrapolations give clear evidence for the existence of a spin-glass
phase.

The nature of th&crFm phase is not clear, like the transition into it. In particular, there

is no evidence for a divergent ferromagnetic susceptibility: fet 6, it even decreases

with decreasing temperature.

The specific heat behaviour is compatible with a non-divergent singularity at the
transition(s).

In the casep = 6 there are, in addition to finite-size effects associated with the
transitions, additional finite-size effects related to the necessary antiferromagnetic bias
of the bond distribution, as revealed by the leading-order terms of the high-temperature
series expansion.

Although the systems are too small to draw any firm conclusions, the data are compatible
with a finite jump ing for p = 6, which, by order of magnitude, agrees with the
analytic prediction, equation (6). Fgr = 3, the corresponding extrapolation indicates

a vanishing jump, in agreement with the known second-order behaviour. The hysteresis-
like behaviour of the order parameter, which should occur in the first-order;casé

in a temperature intervdl. < T < T4 [7,10,11], can show up in the present approach

at most only indirectly via the finite-size behaviour of the order parameter distribution:
In the thermodynamic limit, our procedure should converge to the equilibrium jump
without hysteresis¢® is a single-valued function df for all N), while for finite N all
metastable states also contribute to the averages. However, the finite-size behaviour of
the distribution function near a first-order spin-glass transition without latent heat is, to
our knowledge, unknown (in marked contrast to first-order transitions in pure systems,
where a well established theory and methodology [37] exists). Therefore, it is unclear
how to extract the contributions from the metastable states from the finite-size data.
This lack of theoretical understanding has of course also affected our extrapolations, for
which we simply used the same powersMfas in the second-order case, without any
deeper justification.

Results for larger values @f could possibly be achieved with the help of modern Monte
Carlo methods like simulated tempering [38]. The free-energy behaviour obtained in



Finite-size scaling in mean-field Potts glass 3519

the present study for small systems could be used as an educated guess for the necessary
reweighting schemes.

We hope that we have been able to show that the mean-field Potts glass still poses many
challenging questions.
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